Quotient Complexities of Atoms of Regular Languages
نویسندگان
چکیده
An atom of a regular language L with n (left) quotients is a non-empty intersection of uncomplemented or complemented quotients of L, where each of the n quotients appears in a term of the intersection. The quotient complexity of L, which is the same as the state complexity of L, is the number of quotients of L. We prove that, for any language L with quotient complexity n, the quotient complexity of any atom of L with r complemented quotients has an upper bound of 2 − 1 if r = 0 or r = n, and 1 + ∑r k=1 ∑k+n−r h=k+1 C n h · C h k otherwise, where C i j is the binomial coefficient. For each n > 1, we exhibit a language whose atoms meet these bounds.
منابع مشابه
Maximally Atomic Languages
The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result:...
متن کاملMaximal Syntactic Complexity of Regular Languages Implies Maximal Quotient Complexities of Atoms
We relate two measures of complexity of regular languages. The first is syntactic complexity, that is, the cardinality of the syntactic semigroup of the language. That semigroup is isomorphic to the semigroup of transformations of states induced by non-empty words in the minimal deterministic finite automaton accepting the language. If the language has n left quotients (its minimal automaton ha...
متن کاملQuotient Complexities of Atoms in Regular Ideal Languages
A (left) quotient of a language L by a word w is the language wL = {x | wx ∈ L}. The quotient complexity of a regular language L is the number of quotients of L; it is equal to the state complexity of L, which is the number of states in a minimal deterministic finite automaton accepting L. An atom of L is an equivalence class of the relation in which two words are equivalent if for each quotien...
متن کاملComplexity of Suffix-Free Regular Languages
We study various complexity properties of suffix-free regular languages. The quotient complexity of a regular language L is the number of left quotients of L; this is the same as the state complexity of L, which is the number of states in a minimal deterministic finite automaton (DFA) accepting L. A regular language L′ is a dialect of a regular language L if it differs only slightly from L (for...
متن کاملMost Complex Regular Ideals
A right ideal (left ideal, two-sided ideal) is a non-empty language L over an alphabet Σ such that L = LΣ∗ (L = Σ∗L, L = Σ∗LΣ∗). Let k = 3 for right ideals, 4 for left ideals and 5 for two-sided ideals. We show that there exist sequences (Ln | n > k) of right, left, and two-sided regular ideals, where Ln has quotient complexity (state complexity) n, such that Ln is most complex in its class und...
متن کاملQuotient Complexity of Star-Free Languages
The quotient complexity, also known as state complexity, of a regular language is the number of distinct left quotients of the language. The quotient complexity of an operation is the maximal quotient complexity of the language resulting from the operation, as a function of the quotient complexities of the operands. The class of star-free languages is the smallest class containing the finite la...
متن کامل